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Abstract-The use of a modified form of the Van Driest mixing length for a fully developed turbulent 
channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data 
obtained either from experiments or direct numerical simulations. The calculations are then extended to a 
non-isothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the 
molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in 
reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers 
provides some idea of the Reynolds number required for scaling on wail variables to apply in the inner 

region of the fiow. 

1. INTRODUCTION 

OVER THE past decade or so, direct numerical simu- 
lations (DNS) have considerabIy extended our ability 
to investigate turbulent flows. As well as providing 
new insight into the structure of turbulence, the data 
base generated by these simulations can be used to 
calibrate experimental techniques and to test tur- 
bulence models [I, 21. For example, the data base 
obtained for a fully developed turbulent channel flow 
[3] has been used to test various terms in the transport 
equations for the Reynolds stresses, turbulent kinetic 
energy and dissipation rates. 

In the present paper, the data of ref. [3] and more 
recent simulations obtained in the same flow at a 
higher Reynolds number are used to test a simple 
mixing length model. Apart from their simplicity, 
algebraic relations for the mixing length or eddy vis- 
cosity have performed satisfactorily, at least in simple 
flow geometries and relatively uncomplicated bound- 
ary conditions [4-61. 

Huffman and Bradshaw [7] used a modified Van 
Driest mixing length dist~bution to analyse data in 
several low Reynolds number turbulent wall flows. 
One of the main conclusions of their analysis was that 
the logarithmic velocity profile remains valid provided 
the dimensionless shear stress gradient in the inner 
layer &+,/L$+ is numerically smaller than about 10m3. 
For larger shear stress gradients, the K&m&n constant 
remained unchanged, the main effect being on the 
additive constant in the log law. For the fully 
developed turbulent channel flow, one of the Aows 
considered by these authors, (lt’/c’,r+. is equal to 
-(h+)-‘, where h+ is the Reynolds (or sometimes 

K&man) number, so that low Reynolds number 
effects on the inner region mean velocity profile should 
disappear when h+ 3 103. Following a comparison 
(Section 2) with the DNS data, mean velocity and 
Reynolds shear stress distributions are presented over 
a wide range of h+. In Section 3, these results are 
extended to a slightly heated turbulent channel flow. 
Mean temperature and heat flux distributions are then 
presented over the same h+ range, assuming that the 
turbulent Prandtl number is constant, the latter 
depending on Pr. the moiecular Prandtl number. 

2. MEAN VELOCITY AND REYNOLDS SHEAR 
STRESS 

Huffman and Bradshaw [7] obtained reasonably 
good agreement with Pate1 and Head’s IS] mean vel- 
ocity distributions in a fully developed channel flow 
by using the following mixing length distribution : 

When the total shear stress is constant in the inner 
region, i.e. z+ = I and A+ = 26 expression (l), which 
has also been used by Patankar and Spalding [9] and 
Cebeci and Smith [lo], becomes identical to that first 
proposed by Van Driest [I l]. 

From the definition of total shear stress 

(2) 

it follows that 
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normalized Van Driest damping length 
skin friction coefficient, r,;i~fl$ 
additive constant in log law. equation (7) 
half-width of channel 
Reynolds number, /IU,‘Y 

mixing length, defined by 
-F = (Idi?/d_r)’ 
molecular Prandtl number, $3;; 
turbulent Prandtl number. defined in 

equation (9) 
thermometric wall heat flux 
Reynolds number, O,2/1iv 
instantaneous and mean temperature 
wall lemperature 

friction temperature, Q,,; L’, 
(T*-T)i’T, 

mean velocity in the .y-direction 
average velocity across channel 
friction velocity, T: ’ 

Il. I’, II‘ velocity fluctuations in the .Y-. J’-. :- 
directions, respectively 

Ill’ kinematic Reynolds shear stress 
r-0 thermometric turbulent heat flux 

.Y. J’. : coordinates in streamwise, normal 
(to the wall) and spanwise directions. 

Greek symbols 
.> 

h 
thermal diffusivity 
temperature fluctuation 

IC K&-man constant ( = 0.41) 
I’ kinematic viscosity 
5 kinematic total shear stress, defined in 

equation (2) 

T\\ kinematic wall shear stress, 

Subscript 
W wall value. 

Superscript 

+ normalization by C,, for velocity. T, for 
temperature and Y/U~ for a length 
scale. 

d fl+ 
‘+ = dy+ 

2 
(3) 

with the solution for du+/d_r,’ given by 

dC+ 2T+ 

d.r+ I +(I +4/+%*) ? 

The mean velocity distribution is obtained by numeri- 
cally integrating equation (4). namely 

I 

c”’ = 
2T’ 

l+(I$4/+'T'j'2 
dr+ (5) 

with the total shear stress distribution given by 

Tf = 1-J‘ 
A+ (6) 

and the value of A+ taken from the A + vs ?r ’ /i,r’ 
correlation determined in ref. [7]. This correlation is 
shown in Fig. I in the form A+ vs /I+. The dependence 
of A’ on /I- disappears for /I+ 2 IO’. when A+ is 

equal to about 26. 
Figure 21 confirms that equation (5). with the aid 

of equation (6) and the correlation of Fig. I, yields 
reasonable agreement with the data of ref. [8], depar- 
tures between calculation and measurement tending 
to occur mainly near the centreline. 

It should be pointed out that the limiting behaviour 
of equation (I) at the wall is incorrect since it yields 

t To avoid crowding, the results for /I+ = 125 (A + = 32) 
are not shown in this tigure. Results at this Reynolds number 
are included in subsequent ligurcs. 
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FIG. I. Variation of the Van Driest damping length scale A ’ 
with Reynolds number /I ’ The curve is a best fit to the fully 

developed channel flow data in Fig. 9 of ref. [7]. 
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FIG. 2. Comparison with the mean velocity distributions ot 
Pate1 and Head [8]. Calculations at two large values of /I’ 
(IO1 and IO“) are also shown. Symbols are Pate1 and Head’s 

[g] data. Curves are calculations using equation (5). 
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FIG. 3. Comparison with the DNS mean velocity dis- 
tributions : -. DNS : - -, calculated using equation (5). 

utr+ WY+4 instead of u+zl+ N J’+~. This disad- 
vantage, which also applies to most of the mixing 
length or near-wall damping function distributions 
that have been suggested [4, 12, 131 should not be too 
serious in the present context where the focus is not 
on the near-wall region. Another difficulty is that 
equation (1) is unlikely to describe the Row in the 
duct outer region adequately when h’ becomes large 
enough for the ‘wake’ component of velocity to 
become significant. The distinction between inner and 
outer regions becomes ‘blurred’ at small h+, so that 
the mixing length approach will ‘appear’ adequate 
over a significant fraction of the channel. 

Pate1 and Head [8] defined a Reynolds number Re 
based on the average velocity UM and width (2h) 
of the channel. Using their e,- vs Re correlation, 
the relation between /K+ and Re is given by 
h+ = 0.0686Re" '?. Although this is the relation that 
was used here, a more widely applicable relation, 
based on the duct correlations of Dean [ 141. would be 
h+ = 0.955Re”‘. 

Distributions of g+ obtained for A’ = 26 and 
h’ = IO’, IO4 have been added to Fig. 2. They are 
practically indistinguishable up to y+ x 200, and in 
agreement with a logarithmic dist~bution 

0+ =ic-‘lny++C (7) 

(K = 0.41 and C r 5) in the range 20 $ y+ < 200. 
Direct numerical simulations of a turbulent channel 

flow have been carried out [3] at 11’ c 177 and more 
recently [IS] at h’ = 395. The mean velocity dis- 
tributions for these simulations are compared in Fig. 
3 with calculations obtained from equation (5) and 
the values of A + inferred from Fig. 1, i.e. A + z 33 for 
h+ = 177 and A+ x 28 for h+ = 395. The agreement 
between equation (5) and the simulations is reason- 
able except perhaps near the centreline where the cal- 
culation underestimates the ‘wake’ region, especially 

i Their measurements were actually made at /I + 3 170, 
7 IO. 990 and 1600. It is possible that Reynolds number effects 
have disappeared at h + = I600 although it would be difficult 
to make this assertion without the benefit of data at higher 
II * 
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FIG. 4. Comparison with DNS Reynolds shear stress dis- 
tributions: -, DNS; - -, calculated using equations 

(2), (4) and (6). 

at h+ = 395. This deviation is not important in the 
context of calculating - &+c+ from equations (2) and 
(6) since the magnitude of da* /dy+ is relatively small 
in the ‘wake’ region. Figure 4 shows that good agree- 
ment is indeed achieved between the calculated and __- 
the DNS distributions of -II+ ~1’. 

Calculated distributions of -u+c’+ for the Pate1 
and Head [8] values of h+ and for h+ = 10’ and lo4 -- 
are shown in Fig. 5. The peak magnitude of --u+z’+ 
continues to increase with h+ while the y+ location 
of this peak is approximately unchanged (~25) for 
h’ 6 100. The peak is eventually replaced by a pla- 
teau at large enough h’ when a constant stress region 
can be assumed to exist. Scaling on wall variables is 
clearly inappropriate for the hi range of Pate1 and 
Head’s data in the inner region of the flow. Wei and 
Willmarth [16] concluded, on the basis of their 

7 measurements of u2, L’- and -ZG in a turbulent chan- 
nel flow, that scaling on wall variables was not sat- 
isfied over the Reynolds number range covered by 
their experiment (170 6 iz+ 6 1600).? Figure 5 sug- 
gests that low Reynolds number effects in the inner 
region are unlikely to disappear before h” z 107. The 
distributions for h+ = IO3 and IO4 are quite close to 

each other up to _Y+ z 20. 
The product --u+L” (du+/dv+), the average pro- 

duction of turbulent kinetic energy, is shown in Fig. 
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PIG. 5. Calculated distributions of Reynolds shear 
stress : ---, h+ range (53-204) of ref. [SJ ; - -. If+ = 10’ 

and IO’. 
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FIG. 6. Calculated distributions of average production of FIG. 7. Turbulent Prandtl number distributions for DNS 
turbulent kinetic energy: -, h’ range (53-204) of ref. data: -, Pr =O.l; .‘., Pr=0.71; -.-, Pr= 2.0; 

[S]; - -, h+ = 10’ and IO’. --, assumed average values of PrT. 

6. Like Fig. 5, this figure emphasizes the lack of wall 
scaling for the h+ range of Pate1 and Head [8]. The 
distributions for A+ = 10’ and lo4 are nearly coinci- 
dent with a peak magnitude of about 0.25. It can 
be shown, using equations (2) and (6), that when --- 
h+ -+ CC!, the maximum value of --t(‘c+ (do+/dy+ j 
is 0.25 and occurs at do+/dy+ = 0.5. 

3. MEAN TEMPERATURE AND AVERAGE 

HEAT FLUX 

Direct numerical simulations of a non-isothermal 
turbulent channel flow were made in ref. [17] for 
h’ % 177 and three values of the molecular Prandtl 
number Pr. Two types of heating conditions were 
used. In the first case, a passive scalar was created 
internally and removed from both walls while in the 
second, the scalar was introduced at one wall and 
removed at the other. Detailed statistics were pre- 
sented for the first case only. For this case, the total 
heat flux distribution has a linear dependence on y]iz, 
similar to equation (6) 

-+ 
q+ = -,+o++L!&= I-; (8) 

where V+ Of and i;” are the normalized turbulent heat 
flux and temperature, respectively. 

A simple way of determining p+O+ once u+z.+ is 
known is to assume that the turbulent Prandtl number 
Pr, , namely 

(9) 

is constant, for a particular value of Pr. The dis- 
tribution of Pr, presented in ref. [ 171 and reproduced 
in Fig. 7 using a log-log representation have common 
features: a convergence towards a universal value 
( z 1 .I) at the wall, a maximum at yi x 40 followed 
by a decrease toward the centreline. Here, average 
values of Pr, equal to 0.9 (Pr = 2), 1 (Pr = 0.71) and 
1.3 (Pr = 0.1) have been used (they are indicated by 
the horizontal lines in Fig. 7). Note that the dependence 
of PrT on Fr is qualitatively consistent with the results 

.l 1 10 100 f 000 

of Reynolds’ fl8] review of the relationship between 
PrT and Pr : in general, Pr, is less than I when Pr is 
greater than 1 and vice versa. The present choices of 
Pr, are also in reasonable agreement with Jischa and 
Rieke’s [I91 relation Pr, = c+b Pr- ’ for c = 0.85 
and b = 0.05. Strictly, h depends on Re although the 
dependence of Pr, on Rr is expected to be much 
smaller than on Pr. 

The temperature gradient dT+/dqs+ can be deter- 
mined from equations (8) and (9), namely 

This equation can be integrated to obtain 7’ 

1’ 
, _.f 

F” =i 
I 

h+ 
o pp’i+\+ pr- idy+. (11) 

The turbulent heat Rux -c+O+ is given by 

_;qj+ = (,_;;;)_,,- 1 (EL). (12) 

The distributions of i”’ and --L+ 0’ are shown in 
Figs. 8 and 9, respectively. They compare favourably 
with the DNS results for the three values of Pr. For 
7’) the agreement with the DNS data is as good as 
that obtained using Kader’s [20] formulae (Fig. I(a) 

30. I’, ,‘I, 7 “( 

--- Criicuiot:on Fv-;2.0 
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FIG. 8. Comparison between calculated mean temperature 
and DNS distributions : -, DNS; - -, calculated using 

eyuation (I I). 
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FIG. 9. Comparison between calculated heat flux and DNS 
distributions : -, DNS; - -, calculated using equation 

(12). 

18 

15 

12 

T+ 9 

6 

3 

0 
1 10 100 1000 

Y+ 

FOG. IO. Calculated mean temperature distributions : --. 
/I+ range (53-204) of ref. [8] ; - -, h+ = IO” and 104. 
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FIG. I I. Calculated heat flux distributions: -, h+ range 
(53-204) of ref. [8] ; - -, h+ = 10’ and 104. 

of ref. [ 171). On the assumption that Pr, is unaffected 

by h’ (the boundary layer data of ref. [21] showed that 
Pr, may be affected only at small Reynolds numbers), 
distributions of T” and --L*+ B+ were calculated using 

equations (11) and (12) for Pr = 0.71 and values of 
Iz+ extending to IO“. These distributions are shown in 
Figs. 10 and 1 I, respectively, while the product 
-vie+ (dF’+/dy+), the production of the tem- 
perature variance, is shown in Fig. 12. Apart from 
expected differences in magnitude, these distributions 
exhibit similar features to those in Figs. 2, 5 and 
6. Like -u+z~+, the inner regions’ distributions of 
-u+B+ do not scale on wall variables until h+ cz 103. 

Y+ 

FIG. 12. Calculated distributions of the average production 
of temperature variance: -, h+ range (53-204) of ref. 

[8]; - -, h+ = 10’ and 104. 

In a similar fashion to -u+v+ (dfl+/dy+), -v+Q+ 
x Cd’?” /dy+) becomes approximately independent of 

h+ when h+ 3 103. When h+ -+ cu, equations (2) and 
(I 2) can be used to show that the maximum value 
of -v+i3+ (dT’+/dy+) is Pr/4 and occurs when 
dF’+/dy+ = Pr/2. 

4. CONCLUSIONS AND CONCLUDING 

REMARKS 

Use of the modified Van Driest mixing length, equa- 
tion (I), leads to Reynolds shear stress distributions 
that are in reasonable agreement with those from direct 
numerical simulations of a fully developed duct flow. 
The assumption of a Pr-dependent turbulent Prandtl 
number yields adequate heat flux distributions. 

With the proviso that equation (I) and the assump- 
tion of a constant turbulent Prandtl number are not 
too affected by the Reynolds number, the present cal- 
culations give an indication of the Reynolds number 
required before scaling on wall variables is satisfied in 

the inner region. The calculated distributions of the 
Reynolds shear stress and heat fluxes as well as the 
average productions of turbulent energy and tem- 
perature variance suggest that scaling on wall variables 
should apply when hi L 10”. This is consistent with 

Huffman and Bradshaw’s [7] observation that low 
Reynolds number effects on the mean velocity in the 
inner region should disappear when h+ 3 10’. 

It seems appropriate to conclude with some re- 
marks about the general validity of the present choice 
for the mixing length distribution. This choice 
was suggested by the reasonable results previously 
obtained [7] with this distribution in this particular 
flow. As was noted earlier in the paper, improvements 
can be made to this distribution in order, for example, 

to yield more accurate results in the near-wall region. 
One could also envisage further improvements or fine 
tuning as more DNS data bases become available for 
other flows or wider ranges of Reynolds numbers. 
While the use of mixing length or eddy viscosity 
models that use wall damping functions is inevitably 
ud hoc in nature, it nevertheless represents a currently 
viable approach for engineering calculations. 
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CALCUL DES TENSIONS DE REYNOLDS ET DES FLUX THERMIQUES DANS UN 
ECOULEMENT TURBULENT ETABLI DANS UNE CONDUITE 

RBsum&L’utilisation d’une forme modifiee de la longueur de melange de Van Driest pour les ecoulements 
turbulents etablis dans une conduite conduit a des distributions de vitesse moyenne et de tensions de 
Reynolds qui sont en bon accord avec les experiences ou les simulations numeriques directes. Les calculs 
sont ttendus a l’ecoulement non isotherme en supposant un nombre constant de Prandtl turbulent dont la 
valeur depend du nombre de Prandtl moliculaire. Les distributions calcultes de temperature moyenne et 
de flux thermique lateral sont en accord raisonnable avec les simulations. L’extension des calculs aux 
grands nombres de Reynolds donne une idte du nombre de Reynolds utile pour la mise en tchelle des 

variables par&ales et l’application a la region interne de I’ecoulement. 

BERECHNUNG DER REYNOLDS’SCHEN SCHUBSPANNUNG UND DER 
WARMESTROMDICHTE IN EINER VOLLSTANDIG AUSGEBILDETEN 

TURBULENTEN KANALSTRijMUNG 

Zusammenfassung-Mit Hilfe einer modifizierten Form der Mischungsweglange nach van Driest wird die 
mittlere Geschwindigkeit und die Verteilung der Reynolds’schen Schubspannung fiir eine vollstandig 
ausgebildete turbulente Kanalstriimung berechnet. Die Ergebnisse stimmen gut mit solchen aus exper- 
imentellen Untersuchungen odcr direkten numerischen Berechnungen iiberein. Das Berechnungsverfahren 
wird dann auf nicht isotherme Stromungen ausgedehnt, indem die turbulente Prandtl-Zahl als konstant 
angenommen wird-abhangig van der molekularen Prandtl-Zaht. Die berechneten Verteilungen der 
mittleren Temperatur und der Wirmestromdichte stimmen befriedigend mit Simulationen iiberein. Die 
Ausdehnung der Berechnungen LU griit3eren Reynolds-Zahlen fiihrt zu einer Vorstellung fiber die 
Reynolds-Zahlen, die erforderlich sind. urn von Wandeigenschaften auf den Kern der Striimung hoch- 

rurechnen. 

PACHETbI PEHHOJIbfiCOBCKOFO HAHPIIlKEHHtI CBBHI-A H TEHJIOBOI-0 HOTOKA 
B HOJTHOCTbK) PA3BHTOM TYP6YJIEHTHOM TEYEHMH B KAHAJIE 

Aniwrsun~IIpehfe~eH~e MoAmjxi~poeaHHoii +opMbx mmibt cMemeriaza Bari ApHcra K nonHocrbm 
pa3~11~0~y T,$,‘X.HTHOMy reHeHHr0 B KaHane n03BonReT OnpeAenHTb pacnpeAeneHHe qwuieii CKO- 
pOCTH H peiiHOnbACOBKOr0 Ha"pKmeHHK, KOTOpbIe XOpOrUO COrnaCyloTCK C AaHHblMU, OOnyWHHblMH 

3KClTepESMeHTi,JlbHO KTlH np" "p,,MOM YHCJIeHHOM MOAenHpOBaHHH. %lTeM paCYeTb4 ITpOBOASTCK Qnff 

He,,!,OTepMHWCKOrO Te'leHHK B Il~AIlOnO~eHSiH IN,CTOIIHCTBa Typ6yneHTHOrO YUCJIa l@lWTnK,3HaYe- 

me noTopor0 3anmfr 0T Monenynapiioro wxa IIpaHATnn. Pv me pwaene= cpemefi 
TeMnePaTypbI H UOUepeWOrO TeMOBOrO IlOTOLa yAOBJETBOpHTenbH0 COIYlaCyloTCfi C pe3ynbTaTaMH 

MoAemposaHarr. kicnonbsoeaaee pacwxon AJUI 6onee nblcoK&ix 3HaSeHHii sncna PeihonbACa AaeT 

HeKOTOpOe Il~ACTB~eHHe 0 3Ha'ieHHB 'IHCna PetiHOnbACa, KOTOpOe HeO6XOAUMO AJlJl TOrO, 'ITO6bI 

napaMeTpblHa~eHKeMOrna6bITb"pwMeHeHbI~KpaCseTOaBOBHyT~HHeir o6nacre TWQHWII. 


