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Abstract—The use of a modified form of the Van Driest mixing length for a fully developed turbulent
channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data
obtained either from experiments or direct numerical simulations. The calculations are then extended to a
non-isothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the
molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in
reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers
provides some idea of the Reynolds number required for scaling on wall variables to apply in the inner
region of the flow.

1. INTRODUCTION

OVER THE past decade or so, direct numerical simu-
lations (DNS) have considerably extended our ability
to investigate turbulent flows. As well as providing
new insight into the structure of turbulence, the data
base generated by these simulations can be used to
calibrate experimental techniques and to test tur-
bulence models [1, 2]. For example, the data base
obtained for a fully developed turbulent channel flow
[3] has been used to test various terms in the transport
equations for the Reynolds stresses, turbulent kinetic
energy and dissipation rates.

In the present paper, the data of ref. [3] and more
recent simulations obtained in the same flow at a
higher Reynolds number are used to test a simple
mixing length model. Apart from their simplicity,
algebraic relations for the mixing length or eddy vis-
cosity have performed satisfactorily, at least in simple
flow geometries and relatively uncomplicated bound-
ary conditions [4-6].

Huffman and Bradshaw [7] used a modified Van
Driest mixing length distribution to analyse data in
several low Reynolds number turbulent wall flows.
One of the main conclusions of their analysis was that
the logarithmic velocity profile remains valid provided
the dimensionless shear stress gradient in the inner
layer 617 /0y is numerically smaller than about 1077,
For larger shear stress gradients, the Karman constant
remained unchanged, the main effect being on the
additive constant in the log law. For the fully
developed turbulent channel flow, one of the flows
considered by these authors, dt*/dv*. is equal to
—(h*)~ !, where 4™ is the Reynolds {or sometimes

Karman) number, so that low Reynolds number
effects on the inner region mean velocity profile should
disappear when h* 2 10°. Following a comparison
{Section 2) with the DNS data, mean velocity and
Reynolds shear stress distributions are presented over
a wide range of A*. In Section 3, these results are
extended to a slightly heated turbulent channel flow.
Mean temperature and heat flux distributions are then
presented over the same 4™ range, assuming that the
turbulent Prandtl number is constant, the latter
depending on Pr, the molecular Prandtl number.

2. MEAN VELOCITY AND REYNOLDS SHEAR
STRESS

Huffman and Bradshaw [7] obtained reasonably
good agreement with Patel and Head’s [8] mean vel-
ocity distributions in a fully developed channel flow
by using the following mixing length distribution :

I = gyt {i—exp(—r"’ '-"3:2;)}. n

When the total shear stress is constant in the inner
region, i.e. t7 = | and 4™ = 26 expression (1), which
has also been used by Patankar and Spalding [9] and
Cebeci and Smith [10], becomes identical to that first
proposed by Van Driest {11].

From the definition of total shear stress

AL 6)

it follows that
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) half-width of channel

h Reynolds number, AU, /v

/ mixing length, defined by
—ur = (1d0/dy)?

T
NOMENCLATURE
A" normalized Van Dricst damping length ur kinematic Reynolds shear stress
o skin friction coefficient, 1./} p U3 0 thermometric turbulent heat flux
C additive constant in log law. equation (7) X.». > coordinates in streamwise, normal

(to the wall) and spanwise directions.

Greek symbols
5y thermal diffusivity

i
Pr molecular Prandtl number, v/5 0 temperature fluctuation
Pr; turbulent Prandt] number. defined in K Karman constant (=0.41)
equation (9) v kinematic viscosity
0. thermometric wall heat flux T kinematic total shear stress, defined in
Re Reynolds number, U\,2h/v equation (2)
T.T instantaneous and mean temperature Ty kinematic wall shear stress.
T, wall temperature
T. friction temperature, Q.. /U, Subscript
T (T, T)T, w wall value.
U mean velocity in the x-dircction
‘v average velocity across channel Superscript
U, friction velocity, 1! 2 + normalization by U, for velocity, T, for
u, v, w velocity fluctuations in the x-, y-, =- temperature and v/U, for a length
dircctions, respectively scale.
7+ 7+ \2 80 T T T T
= v + {7 d{J (3)
dy™ dy* 70+ ]
. o 60| ]
with the solution for dU* /dy™ given by Patel & Head
50
do~ 277 4 A+
= 40
dy* [+ (1+4/7 )" )
. . 30 -
The mean velocity distribution is obtained by numeri- 20
cally integrating equation (4), namely B 1 l
“O 1 1 L 1 el i
v 7T+ 1 O2 1 O‘3
U+ = T dyt 5 +
o 1144770y ) h

with the total shear stress distribution given by

+ ¥
h= - e (6)
and the value of A taken from the 4™ vs dt" /¢y~
correlation determined in ref. [7]. This correlation is
shown in Fig. | in the form A7 vs i*. The dependence
of 4% on h™ disappears for #* 2z 10°, when A" is
equal to about 26.

Figure 2% confirms that cquation (5), with the aid
of equation (6) and the correlation of Fig. 1, yields
reasonable agreement with the data of ref. [8], depar-
tures between calculation and measurement tending
to occur mainly near the centreline.

It should be pointed out that the limiting behaviour
of equation (1) at the wall is incorrect since it yields

+To avoid crowding, the results for 4+ = 125 (4% = 32)
are not shown in this figure. Results at this Reynolds number
are included in subsequent figures.

FiG. I. Variation of the Van Driest damping length scale 4*
with Reynolds number /1 ". The curve is a best fit to the fully
developed channel flow data in Fig. 9 of ref. [7].

25 — — ——

.

100

1000
y+

F1G. 2. Comparison with the mean velocity distributions of’

Patel and Head [8). Calculations at two large values of /*

(10* and 10*) are also shown. Symbols are Patel and Head's
[8] data. Curves are calculations using equation (5).
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Fig. 3. Comparison with the DNS mean velocity dis-
tributions : ——_ DNS ; — — calculated using equation (5).

w et ~ y** instead of u*vT ~ y*3. This disad-
vantage, which also applies to most of the mixing
length or near-wall damping function distributions
that have been suggested [4, 12, 13] should not be too
serious in the present context where the focus is not
on the near-wall region. Another difficulty is that
equation (1) is unlikely to describe the flow in the
duct outer region adequately when A* becomes large
enough for the ‘wake’ component of velocity to
become significant. The distinction between inner and
outer regions becomes ‘blurred’ at small 4", so that
the mixing length approach will ‘appear’ adequate
over a significant fraction of the channel.

Patel and Head {8} defined a Reynolds number Re
based on the average velocity Uy and width (2h)
of the channel. Using their ¢, vs Re correlation,
the relation between A" and Re is given by
h* = 0.0686Re'" '*. Although this is the relation that
was used here, a more widely applicable relation,
based on the duct correlations of Dean [14], would be
ht = 0.955Re’™¥,

Distributions of U* obtained for 4% = 26 and
h* =107, 10* have been added to Fig. 2. They are
practically indistinguishable up to y™ ~ 200, and in
agreement with a logarithmic distribution

Ut =x"'lny*+C (7N

(x =041 and C = 5) in the range 20 < »* £ 200.
Direct numerical simulations of a turbulent channel
flow have been carried out [3] at A" =~ 177 and more
recently [15] at 4" = 395. The mean velocity dis-
tributions for these simulations are compared in Fig.
3 with calculations obtained from equation (5) and
the values of 47 inferred from Fig. 1,ie. 4% ~ 33 for
h* =177 and A" = 28 for A" = 395. The agreement
between equation (5) and the simulations is reason-
able except perhaps near the centreline where the cal-
culation underestimates the ‘wake’ region, especially

T Their measurements were actually made at 4% x 170,
710,990 and 1600. It is possible that Reynolds number effects
have disappeared at 2 = 1600 although it would be difficult
to make this assertion without the benefit of data at higher
it
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F16. 4. Comparison with DNS Reynolds shear stress dis-
tributions: ——, DNS; — —, calculated using equations
(2), (4) and (6).

at h* = 395, This deviation is not important in the
context of calculating —u* v from equations (2) and
{6) since the magnitude of dU * jdy™ is relatively small
in the ‘wake’ region. Figure 4 shows that good agree-
ment is indeed achieved between the calculated and
the DNS distributions of —u* v,

Calculated distributions of —u*v* for the Patel
and Head [8] values of #* and for A* = 10* and 10*
are shown in Fig. 5. The peak magnitude of —u" o™
continues to increase with 2* while the y* location
of this peak is approximately unchanged (~25) for
A" < 100. The peak is eventually replaced by a pla-
teau at large enough #* when a constant stress region
can be assumed to exist. Scaling on wall variables is
clearly inappropriate for the #* range of Patel and
Head’s data in the inner region of the flow. Wei and
Willmarth [16] concluded, on the basis of their
measurements of #°, ¥ and —7@ in a turbulent chan-
nel flow, that scaling on wall variables was not sat-
isfied aver the Reynolds number range covered by
their experiment (170 < 2™ < 1600).1 Figure 5 sug-
gests that low Reynolds number effects in the inner
region are unlikely to disappear before 2% &~ 10°. The
distributions for #* = 10" and 10* are quite close to
each other up to y " = 20.

The product —u*¢* (dU*/dy*), the average pro-
duction of turbulent kinetic energy, is shown in Fig.
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F1G. 5. Calculated distributions of Reynolds shear
stress: ——, A* range (53-204) of ref. [8]; — —. A* = 10?
and 10°.



2016

0-3 :

(dU* /dy*)

—utyt

1000

F16. 6. Calculated distributions of average production of
turbulent kinetic energy: , h* range (53-204) of ref.
[8]; ~— — k% = 10" and 10",

6. Like Fig. 5, this figure emphasizes the lack of wall
scaling for the £ range of Patel and Head [8]. The
distributions for #* = 10* and 10* are nearly coinci-
dent with a peak magnitude of about 0.25. It can
be shown, using equations (2) and (6), that when
h* = oo, the maximum value of —u*e¥ (AU /dy*)
is 0.25 and occurs at dU* /dy* = 0.5.

3. MEAN TEMPERATURE AND AVERAGE
HEAT FLUX

Direct numerical simulations of a non-isothermal
turbulent channel flow were made in ref. [17] for
A% = 177 and three values of the molecular Prandtl
number Pr. Two types of heating conditions were
used. In the first case, a passive scalar was created
internally and removed from both walls while in the
second, the scalar was introduced at one wall and
removed at the other. Detailed statistics were pre-
sented for the first case only. For this case, the total
heat flux distribution has a linear dependence on y/h,
similar to equation (6)

+ iR . Y
e @
where v* §F and T are the normalized turbulent heat
flux and temperature, respectively.

A simple way of determining v*0% once u*v* is
known is to assume that the turbulent Prandt! number
Pry, namely

et dTHjdpt
Pf'-r BE oo T e

orgr aU* ,”d)‘g ©

is constant, for a particular value of Pr. The dis-
tribution of Pry presented in ref. [17] and reproduced
in Fig. 7 using a log-log representation have common
features: a convergence towards a universal value
(~1.1) at the wall, 2 maximum at y* = 40 followed
by a decrease toward the centreline. Here, average
values of Prr equal to 0.9 (Pr = 2), 1 (Pr=0.71) and
1.3 (Pr = 0.1) have been used (they are indicated by
the horizontal lines in Fig. 7). Note that the dependence
of Pry on Pris qualitatively consistent with the results
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FiG. 7. Turbulent Prandtl number distributions for DNS
data; ——, Pr=0.1; -+, Pr=071; —-—, Pr=20;

——, assumed average values of Prr.

of Reynolds’ [18] review of the relationship between
Pry and Pr: in general, Pr; is less than 1 when Pris
greater than | and vice versa. The present choices of
Pry are also in reasonable agreement with Jischa and
Rieke’s [19] relation Pry=c+b Pr~' for ¢ =085
and b = 0.05. Strictly, 5 depends on Re although the
dependence of Pry on Re is expected to be much
smaller than on Pr.

The temperature gradient d7+/dy™ can be deter-
mined from equations (8) and (9), namely

a7+ A
e (]«—i2 >{/(Pr Yy Pee Y. (10)

This equation can be integrated to obtain T+

yt

R

- ! h*
+ e - IS
r _'J; Proi4vt pr! dyr.

The turbulent heat flux —o* 07 is given by

o pt VA
—pt 0t = — ] = RN [ 2
() (1),

The distributions of T* and —v*0* are shown in
Figs. 8 and 9, respectively. They compare favourably
with the DNS results for the three values of Pr. For
T+, the agreement with the DNS data is as good as
that obtained using Kader’s [20] formulae (Fig. 1(a)

(n
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Fi1G. 8. Comparison between calculated mean temperature
and DNS distributions: ——, DNS; — —, calculated using

equation (i1).
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F1G. 9. Comparison between calculated heat flux and DNS
distributions: —, DNS; — — calculated using equation
(12).
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Fi1G. 10. Calculated mean temperature distributions: —-—,
h* range (53-204) of ref. [8]; — —., A* = 10° and 10*.
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FiG. 11. Calculated heat flux distributions: ——, A* range
(53-204) of ref. [8]; — —, #* = 10" and 10*.

of ref. [17]). On the assumption that Pr; is unaffected
by h* (the boundary layer data of ref. [21] showed that
Pr; may be affected only at small Reynolds numbers),
distributions of T+ and —v* 6+ were calculated using
equations (11) and (12) for Pr = 0.71 and values of
h* extending to 10*. These distributions are shown in
Figs. 10 and 11, respectively, while the product
—v*0% (dT*/dy*), the production of the tem-
perature variance, is shown in Fig. 12. Apart from
expected differences in magnitude, these distributions
exhibit similar features to those in Figs. 2, 5 and
6. Like —u*ov*, the inner regions’ distributions of
—v* 6" do not scale on wall variables until 4+ ~ 10°.

2017
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FiG. 12. Calculated distributions of the average production
of temperature variance: , h* range (53-204) of ref.
[8); — —, A" = 10" and 10*.

In a similar fashion to —u*o* (dT*/dy*), ~o* 6%
x (dT* /dy*) becomes approximately independent of
h™ when A* 2 10°. When 4" — o0, equations (2) and
(12) can be used to show that the maximum value
of —v*8% (dT*/dy*) is Pr/4 and occurs when
dT*/dy* = Pr/2.

4. CONCLUSIONS AND CONCLUDING
REMARKS

Use of the modified Van Driest mixing length, equa-
tion (1), leads to Reynolds shear stress distributions
that are in reasonable agreement with those from direct
numerical simulations of a fully developed duct flow.
The assumption of a Pr-dependent turbulent Prandtl
number yields adequate heat flux distributions.

With the proviso that equation (1) and the assump-
tion of a constant turbulent Prandt] number are not
too affected by the Reynolds number, the present cal-
culations give an indication of the Reynolds number
required before scaling on wall variables is satisfied in
the inner region. The calculated distributions of the
Reynolds shear stress and heat fluxes as well as the
average productions of turbulent energy and tem-
perature variance suggest that scaling on wall variables
should apply when A* = 10°. This is consistent with
Huffman and Bradshaw’s [7] observation that low
Reynolds number effects on the mean velocity in the
inner region should disappear when 4" = 10°.

It seems appropriate to conclude with some re-
marks about the general validity of the present choice
for the mixing length distribution. This choice
was suggested by the reasonable results previously
obtained [7] with this distribution in this particular
flow. As was noted earlier in the paper, improvements
can be made to this distribution in order, for example,
to yield more accurate results in the near-wall region.
One could also envisage further improvements or fine
tuning as more DNS data bases become available for
other flows or wider ranges of Reynolds numbers.
While the use of mixing length or eddy viscosity
models that use wall damping functions is inevitably
ad hoc in nature, it nevertheless represents a currently
viable approach for engineering calculations.
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CALCUL DES TENSIONS DE REYNOLDS ET DES FLUX THERMIQUES DANS UN
ECOULEMENT TURBULENT ETABLI DANS UNE CONDUITE

Résumé—L utilisation d’une forme modifiée de la longueur de mélange de Van Driest pour les écoulements
turbulents établis dans une conduite conduit a des distributions de vitesse moyenne et de tensions de
Reynolds qui sont en bon accord avec les expériences ou les simulations numériques directes. Les calculs
sont étendus a I’écoulement non isotherme en supposant un nombre constant de Prandtl turbulent dont la
valeur dépend du nombre de Prandtl moléculaire. Les distributions calculées de température moyenne et
de flux thermique latéral sont en accord raisonnable avec les simulations. L’extension des calculs aux
grands nombres de Reynolds donne une idée du nombre de Reynolds utile pour la mise en échelle des
variables pariétales et Iapplication 4 la région interne de I’écoulement.

BERECHNUNG DER REYNOLDS'SCHEN SCHUBSPANNUNG UND DER
WARMESTROMDICHTE IN EINER VOLLSTANDIG AUSGEBILDETEN
TURBULENTEN KANALSTROMUNG

Zusammenfassung—Mit Hilfe einer modifizierten Form der Mischungsweglinge nach van Driest wird die
mittlere Geschwindigkeit und die Verteilung der Reynolds'schen Schubspannung fiir eine vollstdndig
ausgebildete turbulente Kanalstrdmung berechnet. Die Ergebnisse stimmen gut mit solchen aus exper-
imentellen Untersuchungen oder direkten numerischen Berechnungen iiberein. Das Berechnungsverfahren
wird dann auf nicht isotherme Stromungen ausgedehnt, indem die turbulente Prandtl-Zahl als konstant
angenommen wird—abhéngig von der molekularen Prandtl-Zahl. Dic berechneten Verteilungen der
mittleren Temperatur und der Wirmestromdichte stimmen befriedigend mit Simulationen Gberein. Die
Ausdehnung der Berechnungen zu groBeren Reynolds-Zahlen fiihrt zu einer Vorstellung iiber die
Reynolds-Zahlen, die erforderlich sind, um von Wandeigenschaften auf den Kern der Strémung hoch-
zurechnen.

PACYETHI PEHHOJIBACOBCKOI'O HAINPSIKEHUS CABHI'A U TEIJIOBOI'O ITOTOKA
B MMOJIHOCTBHIO PA3BUTOM TYPEYJIEHTHOM TEYEHMH B KAHAJIE

Ansoraums—IIpamenenne Moar¢uuupoBaHHOH GOPMBI IJIMHBI CMEIUEHHS BaH JIDHCTA K [IOJIHOCTBIO
Pa3BHTOMY TYpOYJIEHTHOMY TeUeHHIO B KaHajle MO3BOJIAET ONPEACIHTL PACHpelesieHHe CpeaHel cKo-
pPOCTH M pefiHOMLACOBKOrO HANPMKEHHS, KOTOPHIE XOPOHIO COTJIACYIOTCH € HaHHBIMH, MOJY4eHHBIMH
IKCTIEPUMEHTAILHO MM MPH NMPSMOM YHCJIEHHOM MOJEIHPOBAHMH. 3aTeM pacyeThl NPOBOASTCA NS
HEH30TEPMHYECKOTO TEYEHHS B MPENOJIOKEHHH NOCTOAHCTBA TypOynenTHoro wucna Ipanaras, 3uave-
HHE KOTOPOrO 34BHCHT OT MOJIEKYJApHOro uucna Ilpasnris. PaccuMTaHHBE pacnpenencHHs CpeaHed
TEMIEPATYPH ¥ HONEPEYHOTO TEIUIOBOTO NMOTOKA YAOBJICTBOPHTEIBHO COrJNACYIOTCH C Pe3yNbTaTaMH
moaenuposanus. Mcnonb3oBanue pacdeToB Ans 6osiee BHICOKAX 3HaveHHH wmcna PefiHonbaca naer
HeKOTOpOE NpelCTBAJIEHHEe O 3HAYEHMM 4HCIa PefHOIbICAa, KOTOPOE HEOOXOAMMO IS TOro, 4robsl

napameTpsl Ha CTEHKE MOTUIH GbITh IPHMEHEHB! JUTA PACYeTOB BO BHYTPEHHEH 006,1aCTH TEYEHHS.



